Reg. No. :

Question Paper Code: 61213

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Seventh Semester

Electronics and Communication Engineering

EC 1402 A - MICROWAVE ENGINEERING

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define a reciprocal network. Give an example.
- 2. Write the S matrix equation for a 2 port network.
- 3. Mention the use of matched terminations.
- 4. Write the S matrix of a isolator.
- 5. What is the function of the repeller voltage in the reflex Klystron.
- 6. Mention two differences between Klystron and TWT.
- 7. What is Gunn effect?
- 8. What is the principle of a varactor diode?
- 9. Define VSWR and reflection coefficient.
- 10. Define insertion loss.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Draw and explain the scattering port matrix representation for a multiport network. (6)
 - (ii) Discuss the properties of the Scattering matrix. (10)

	(b)	(i) Compare the [S], [Z] and [Y] matrices. (6)
		(ii) Obtain the relationship between ABCD parameters and S parameters. (10	t)
12.	(a)	(i) Explain the working of a two hole directional coupler and obtain its scattering matrix. (8	s)
		(ii) Explain the function of waveguide corners, bends and twists. (8)
		Or	
	(b)	(i) Explain the functional operation of a magic tee and mention its applications. (8)	3)
		(ii) Explain the principle of operation of passive attenuators. (8))
13.	(a)	Describe with a neat diagram, the principle of operation of a two cavity Klystron amplifiers. Discuss its mode curves, equivalent circuit ,voltage gain and efficiency. (16)	, ,)

Or

- (b) Describe the mechanism of oscillation of a magnetron. Discuss how mode separation and phase focusing are achieved in it. Mention its typical power output and applications. (16)
- 14. (a) Draw the various structures of a IMPATT diode . Explain its principle of operation, power output and efficiency considerations. (16)

Or

- (b) (i) Explain the mechanism of operation of tunnel diode oscillators. (8)
 - (ii) Explain the principle and types of parametric amplifiers. (8)
- 15. (a) (i) Explain impedance measurement using slotted line. (8)
 - (ii) Explain the operation of the bolometer sensor for measuring power.

Or

- (b) (i) Explain how direct frequency measurement of microwave source is carried out. (8)
 - (ii) Describe the steps involved to measure dielectric constant of a solid using waveguide method. (8)

(8)

2